Powers in finite groups
نویسنده
چکیده
If G is a finitely generated profinite group then the verbal subgroup Gq is open. In a d-generator finite group every product of qth powers is a product of f(d, q) qth powers. 20E20, 20F20.
منابع مشابه
Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملNon-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملPowers in Finitely Generated Groups
In this paper we study the set Γn of nth-powers in certain finitely generated groups Γ. We show that, if Γ is soluble or linear, and Γn contains a finite index subgroup, then Γ is nilpotent-by-finite. We also show that, if Γ is linear and Γn has finite index (i.e. Γ may be covered by finitely many translations of Γn), then Γ is soluble-by-finite. The proof applies invariant measures on amenable...
متن کاملSecond symmetric powers of chain complexes
We investigate Buchbaum and Eisenbud's construction of the second symmetric power $s_R(X)$ of a chain complex $X$ of modules over a commutative ring $R$. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following vers...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کامل